MTH 605: Topology I

Practice Assignment VII

- 1. Show that any covering space of the torus T is isomorphic to T, or the plane, or $S^1 \times \mathbb{R}$.
- 2. Show that for $g \ge 1$, the closed nonorientable surface N_g with g crosscaps is doublecovered by the closed orientable surface S_{g-1} . Derive the subgroup of $\pi_1(N_g)$ that corresponds to this cover.
- 3. Consider the closed orientable surface S_g of genus $g \ge 2$.
 - (a) Show that any k-sheeted cover of S_g is homeomorphic to $S_{(g-1)k+1}$.
 - (b) Consider the the covering space $p_k : S_{(g-1)k+1} \to S_g$ induced by the covering action of \mathbb{Z}_k on $S_{(g-1)k+1}$. Derive the subgroup of $\pi_1(S_g)$ that corresponds to this cover.
- 4. For $g \ge 0$ and $b \ge 1$, let $S_{g,b}$ be the orientable surface of genus g with b boundary components (i.e. $S_{g,b}$ is homeomorphic to the surface obtained by the deleting b disjoint open disks from $S_{g,b}$.)
 - (a) Describe a cell-complex structure on $S_{q,b}$.
 - (b) Use this structure to derive a presentation for $\pi_1(S_{g,b})$.
- 5. Find all connected 2-sheeted, 3-sheeted, and 4-sheeted covering spaces of the figure 8 space $S^1 \vee S^1$ up to isomorphism.
- 6. Assume that $\pi_1(S^1 \vee S^1) \cong \langle a, b \rangle$, the free group on two letters a and b. Up to isomorphism, find the covering spaces of $S^1 \vee S^1$ that corresponds to the subgroups $\langle a \rangle \leq \pi_1(S^1 \vee S^1)$ and $\langle b \rangle \leq \pi_1(S^1 \vee S^1)$.
- 7. Consider the covering space $p: \tilde{X} \to X$ of the wedge X of three circles shown in the figure below.

Figure 1: A cover \tilde{X} of the wedge of three circles.

(a) Show that \tilde{X} is a normal cover.

- (b) Find a free generating set for the subgroup $p_*(\pi_1(\tilde{X}, v))$ of $\pi(X) = \langle a, b, c \rangle$ that corresponds to this cover. [5]
- 8. Given a group and a normal subgroup N, show that there exists a normal covering $\widetilde{X} \to X$ with $\pi_1(X) \cong G$, $\pi_1(\widetilde{X}) \cong N$. and the deck transformation group $G(\widetilde{X} \to X) \approx G/N$.
- 9. Given covering actions of groups G_1 on X_1 and G_2 on X_2 , show that the action of $G_1 \times G_2$ on $X_1 \times X_2$ defined by $(g_1, g_2)(x_1, x_2) = (g_1(x_1), g_2(x_2))$ is a covering space action, and that $(X_1 \times X_2)/(G_1 \times G_2) \approx X_1/G_1 \times X_2/G_2$.
- 10. For a covering space $p: \widetilde{X} \to X$ with X connected, locally path-connected, and semilocally simply-connected, show that
 - (a) The components of \widetilde{X} are in one-to-one correspondence with the orbits of the action of $\pi_1(X, x_0)$ on the fiber $p^{-1}(x_0)$.
 - (b) Under the Galois correspondence between connected covering spaces of X and the subgroups of $\pi_1(X, x_0)$, the subgroup corresponding to the component of \widetilde{X} containing a given lift $\widetilde{x_0}$ of x_0 is the stabilizer of $\widetilde{x_0}$, the subgroup consisting of elements whose action on the fiber leaves $\widetilde{x_0}$ fixed.
- 11. Let X and Y be topological spaces. Suppose there exists continuous maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g \simeq i_Y$ and $g \circ f \simeq i_X$. Then X is said to be homotopically equivalent to Y (or X is said to have the same homotopy type as Y), denoted by $X \simeq Y$.
 - (a) Please read Lemma 58.4, Corollaries 58.5-58.6, and Theorem 58.7 from Munkres.
 - (b) Show that if a space X is contractible, then X has the same homotopy type as a point.
 - (c) Show that if A is a deformation retract of X.
 - (d) Give a counterexample to show that the converse of (b) does not hold always. [Hint: Consider $X = \bigcup_{n \in \mathbb{Z}_+} (1/n) \times I$ and $x_0 = (0, 1)$.]